COVID-19 studies:  C19 studies: C19:  IvermectinIVM Vitamin DV.D PXPX FLVFLV PVP-IPI BUBU BHBH BLBL CICI HC QHC Q NZNZ COCO More..
Ivermectin study #63 of 97
1/25 In Silico
Eweas et al., Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908 (Peer Reviewed)
Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2
Source   PDF   Share   Tweet
Molecular docking analysis showing that ivermectin efficiently binds to the viral S protein as well as the human cell surface receptors ACE-2 and TMPRSS2; therefore, it might be involved in inhibiting the entry of the virus into the host cell. It also binds to Mpro and PLpro of SARS-CoV-2; therefore, it might play a role in preventing the post-translational processing of viral polyproteins. The highly efficient binding of ivermectin to the viral N phosphoprotein and nsp14 is suggestive of its role in inhibiting viral replication and assembly.

Eweas et al., 1/25/2021, peer-reviewed, 3 authors.
All 97 studies    Meta analysis
Please send us corrections, updates, or comments. Vaccines and treatments are both extremely valuable and complementary. All practical, effective, and safe means should be used. Elimination of COVID-19 is a race against viral evolution. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. Denying the efficacy of any method increases the risk of COVID-19 becoming endemic; and increases mortality, morbidity, and collateral damage. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. Treatment protocols for physicians are available from the FLCCC.
  or use drag and drop to submit images   
Submit